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ABSTRACT
Large Language Models (LLMs) are gaining popularity in the field
of Natural Language Processing (NLP) due to their remarkable
accuracy in various NLP tasks. LLMs designed for coding are trained
on massive datasets, which enables them to learn the structure and
syntax of programming languages. These datasets are scraped from
the web and LLMs memorise information in these datasets. LLMs
for code are also growing, making themmore challenging to execute
andmaking users increasingly reliant on external infrastructure.We
aim to explore the challenges faced by LLMs for code and propose
techniques to measure and prevent memorisation. Additionally,
we suggest methods to compress models and run them locally on
consumer hardware.
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1 INTRODUCTION
In recent years, Large Language Models (LLMs) have become in-
creasingly popular in Natural Language Processing (NLP) due to
their impressive accuracy in a wide range of NLP tasks [1]. As
the number of parameters in these models increases from millions
to billions, their accuracy and capabilities also improve [2]. LLMs
designed for coding (LLMs4Code) are trained on large datasets and
can learn the structure and syntax of programming languages. As
a result, they are highly proficient in tasks such as generating [3],
summarising [4], and completing code [5].

The appeal of scaling up LLMs is the discovery of emergent
capabilities [6]. Emergent capabilities cannot be anticipated by ex-
trapolating scaling laws and only become visible at a certain critical
model size threshold [6]. This encourages the training of ever-larger
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models, as abilities such as chain-of-thought prompting [7] and in-
struction tuning [8] can only be achieved in models with more than
100B parameters [6]. However, this increase in parameter counts
makes it increasingly difficult to deploy and run LLMs. Many state-
of-the-art open source LLMs4Code such as CodeLlama [9] and
WizardCoder [10] cannot be executed on consumer GPUs with less
than 32GB of VRAM1.

This excludes many from being able to use current state-of-the-
art LLMs. Those who cannot afford the hardware to deploy the
models must rely on external services to run the models, such as
GitHub Copilot. From a privacy and security perspective, this is not
always desirable. Firstly, the source code might contain all types of
information about the developer, which is then sent to an external
party. Secondly, some organisations do not allow their proprietary
source code to leave their premises.

It has also been observed that large language models trained on
natural language can memorise and regurgitate training data [11–
22]. This issue has not been fully explored for code. Moreover, the
issue of memorisation in the source code is different from that of
natural language.

The open source code used in LLM training for code is often
licenced under non-permissive copy-left licences, such as GPL or the
CC-BY-SA licence employed by StackOverflow [11]. Reusing code
covered by these licences without making the source code available
under the same licence is considered a violation of copyright law.
In some jurisdictions, this leaves users of tools such as CoPilot at
legal risk [11, 15, 23]. Sharing code without proper licences is also
ethically questionable [11, 15, 16].

Memorised data can also include confidential information [24–
26], which can include credentials, API keys, emails, and other
sensitive data [11, 27]. This means that memorisation could put the
private information contained in the training data at risk. Recently,
attacks which exploit memorisation have been able to extract (or
reconstruct) training data from LLMs [19, 22, 24, 28]. The US Na-
tional Institute of Standards and Technology (NIST) considers data
reconstruction attacks to be the most serious type of privacy attack
against machine learning models [29]. OWASP classifies Sensitive
Information Disclosure (LLM06) as the sixth most critical vulnera-
bility in LLM applications. 2

We propose an approach to measure the rate at which memori-
sation occurs in LLMs4Code. We then measure the rate at which
memorisation occurs for PII and copyrighted code. These findings
will then be used to inform dataset construction and model train-
ing techniques to prevent memorisation. In parallel, we will also
investigate approaches to compress LLMs4Code and the impact of
compression on memorisation.

1Can you run it? LLM version: https://huggingface.co/spaces/Vokturz/can-it-run-llm
2OWASP Top 10 for Large Language Model Applications: https://owasp.org/www-
project-top-10-for-large-language-model-applications/
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2 BACKGROUND AND RELATEDWORK
2.1 Memorisation
Memorisation in language models is the capacity to remember and
recall details of the data it has been trained on. This happens when
the model is too specific and does not generalise well to new or
unseen data [20, 30]. As a result, themodel can accurately reproduce
phrases, sentences, or even entire documents from the training data.
Apart from the privacy issues discussed in section 1, memorisation
also leads to an overestimation of performance. For example, CodeX
has been observed to be able to solve HackerRank problems without
receiving the full task description [18].

Memorisation can lead to high accuracy, but it does not neces-
sarily mean that the model will generalise well to new or unseen
data. This can lead to poor performance in real-world applications.
Furthermore, memorisation can reduce the model’s ability to adjust
its output to particular use cases. For instance, when slightly al-
tering HackerRank problems, CodeX [31] has difficulty producing
the correct solution, instead repeating the answer for the original
problem [18, 32].

2.2 Data Extraction Attacks
Data extraction attacks are a type of attack in which an adversary
extracts a data point from the training data of a model. Attacks can
be divided into two types for LLMs, namely guided and unguided
attacks [28].

In an unguided attack, the adversary does not know the sample
to be extracted from the model. The adversary simply attempts
to extract any training point, contained anywhere in the training
corpus [14, 24, 25, 33]. Targeted attacks are more security-critical
as they allow the targeting of specific information, such as the
extraction of emails [15, 25, 28, 34, 35].

2.3 Model Compression
Model Compression for LLMs can roughly be divided into three
techniques. Namely, knowledge distillation, pruning, and quantisa-
tion [36, 37].

Knowledge distillation transfers the knowledge of the large
teacher model to a smaller and simpler student model [36]. Prun-
ing reduces the size of the model by removing unneeded parame-
ters [36, 38, 39]. Quantisation is a relatively simple technique that
reduces the precision of the model by reducing floating point num-
bers to integers or smaller representations [36, 40, 41].

A number of methods, including XTC [37], have been developed
to combine multiple techniques to achieve a higher compression
rate. While these hybrid approaches have been used to compress
models from the natural language domain, their application to
software models has yet to be fully explored.

3 APPROACH
First, we explore the different risks and implications posed by
LLMs4Code. In our position paper, we map the existing privacy
problems in LLMs to the source code domain. We also identify other
code-specific issues, namely licencing and security [11].

3.1 Memorisation
To measure memorisation, we create a set of potentially extractable
samples for a given model using a targeted data extraction attack.
The process of finding memorised data is relatively simple [28], by
changing the number of input tokens, we can change the difficulty
of the sample, which in turn allows us to compare the rate between
different models and prompting techniques 3. This work has already
been completed and was accepted into the main ICSE track.

Using this framework for measurement, we can extend the eval-
uation to also look at specific types of data. Using techniques like
those described by Niu et al. [42], we can identify code that contains
PII and use it as input to our evaluation. We can similarly extend
our evaluation to include copyrighted code as well.

Based on these findings, we can identify patterns that elicit
memorisation in LLMs4Code and can put the user at risk. These
patterns can then be used to design datasets and training regimes
that reduce the memorisation rate.

3.2 Compression
Finally, for the Model Compression, we plan to adapt different tech-
niques for compression from the natural language domain to code.
We measure the parameter count, disk size, size in VRAM, inference
time and accuracy for each given model and compression technique.
We further investigate the impact of compressing the LLMs on the
rate of memorisation, and the relation between overparametrisation
and memorisation.

4 EXPECTED CONTRIBUTIONS
As Large Language Models for Code (LLMs4Code) continue to gain
widespread adoption, our research aims to enhance their usabil-
ity and instil trust among users. By developing robust techniques
for measuring memorisation in LLMs4Code, we empower users
with the knowledge to make well-informed decisions regarding the
models they choose to employ.

Our research contributes to the evolution of LLMs4Code by
addressing concerns related to memorisation, thereby reducing
the likelihood and associated risks of unintended memorisation
in model outputs. This proactive approach ensures that users can
have confidence in the reliability and generalisation capabilities of
the models they rely on, fostering a more secure and dependable
ecosystem for utilising LLMs4Code.

Moreover, our work on compressing LLMs is a significant step
towards democratizing access to these powerful tools by substan-
tially reducing the hardware requirements traditionally associated
with their deployment. Our efforts will make LLMs4Code more ac-
cessible to a broader audience, paving the way for wider adoption
and greater participation, which would enable more individuals to
benefit from the use of LLMs4Code.
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