
Towards Safe, Secure, and Usable LLMs4Code
Ali Al-Kaswan

a.al-kaswan@tudelft.nl
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Large Language Models (LLMs) are gaining popularity in the field
of Natural Language Processing (NLP) due to their remarkable
accuracy in various NLP tasks. LLMs designed for coding are trained
on massive datasets, which enables them to learn the structure and
syntax of programming languages. These datasets are scraped from
the web and LLMs memorise information in these datasets. LLMs
for code are also growing, making themmore challenging to execute
andmaking users increasingly reliant on external infrastructure.We
aim to explore the challenges faced by LLMs for code and propose
techniques to measure and prevent memorisation. Additionally,
we suggest methods to compress models and run them locally on
consumer hardware.

CCS CONCEPTS
• Security and privacy; • Software and its engineering; • Com-
puting methodologies→Machine learning;

KEYWORDS
large language models, privacy, memorisation, data leakage, com-
pression
ACM Reference Format:
Ali Al-Kaswan. 2024. Towards Safe, Secure, and Usable LLMs4Code. In 2024
IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3639478.3639803

1 INTRODUCTION
In recent years, Large Language Models (LLMs) have become in-
creasingly popular in Natural Language Processing (NLP) due to
their impressive accuracy in a wide range of NLP tasks [1]. As
the number of parameters in these models increases from millions
to billions, their accuracy and capabilities also improve [2]. LLMs
designed for coding (LLMs4Code) are trained on large datasets and
can learn the structure and syntax of programming languages. As
a result, they are highly proficient in tasks such as generating [3],
summarising [4], and completing code [5].

The appeal of scaling up LLMs is the discovery of emergent
capabilities [6]. Emergent capabilities cannot be anticipated by ex-
trapolating scaling laws and only become visible at a certain critical
model size threshold [6]. This encourages the training of ever-larger

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3639803

models, as abilities such as chain-of-thought prompting [7] and in-
struction tuning [8] can only be achieved in models with more than
100B parameters [6]. However, this increase in parameter counts
makes it increasingly difficult to deploy and run LLMs. Many state-
of-the-art open source LLMs4Code such as CodeLlama [9] and
WizardCoder [10] cannot be executed on consumer GPUs with less
than 32GB of VRAM1.

This excludes many from being able to use current state-of-the-
art LLMs. Those who cannot afford the hardware to deploy the
models must rely on external services to run the models, such as
GitHub Copilot. From a privacy and security perspective, this is not
always desirable. Firstly, the source code might contain all types of
information about the developer, which is then sent to an external
party. Secondly, some organisations do not allow their proprietary
source code to leave their premises.

It has also been observed that large language models trained on
natural language can memorise and regurgitate training data [11–
22]. This issue has not been fully explored for code. Moreover, the
issue of memorisation in the source code is different from that of
natural language.

The open source code used in LLM training for code is often
licenced under non-permissive copy-left licences, such as GPL or the
CC-BY-SA licence employed by StackOverflow [11]. Reusing code
covered by these licences without making the source code available
under the same licence is considered a violation of copyright law.
In some jurisdictions, this leaves users of tools such as CoPilot at
legal risk [11, 15, 23]. Sharing code without proper licences is also
ethically questionable [11, 15, 16].

Memorised data can also include confidential information [24–
26], which can include credentials, API keys, emails, and other
sensitive data [11, 27]. This means that memorisation could put the
private information contained in the training data at risk. Recently,
attacks which exploit memorisation have been able to extract (or
reconstruct) training data from LLMs [19, 22, 24, 28]. The US Na-
tional Institute of Standards and Technology (NIST) considers data
reconstruction attacks to be the most serious type of privacy attack
against machine learning models [29]. OWASP classifies Sensitive
Information Disclosure (LLM06) as the sixth most critical vulnera-
bility in LLM applications. 2

We propose an approach to measure the rate at which memori-
sation occurs in LLMs4Code. We then measure the rate at which
memorisation occurs for PII and copyrighted code. These findings
will then be used to inform dataset construction and model train-
ing techniques to prevent memorisation. In parallel, we will also
investigate approaches to compress LLMs4Code and the impact of
compression on memorisation.

1Can you run it? LLM version: https://huggingface.co/spaces/Vokturz/can-it-run-llm
2OWASP Top 10 for Large Language Model Applications: https://owasp.org/www-
project-top-10-for-large-language-model-applications/

https://doi.org/10.1145/3639478.3639803
https://doi.org/10.1145/3639478.3639803
https://huggingface.co/spaces/Vokturz/can-it-run-llm
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ali Al-Kaswan

2 BACKGROUND AND RELATEDWORK
2.1 Memorisation
Memorisation in language models is the capacity to remember and
recall details of the data it has been trained on. This happens when
the model is too specific and does not generalise well to new or
unseen data [20, 30]. As a result, themodel can accurately reproduce
phrases, sentences, or even entire documents from the training data.
Apart from the privacy issues discussed in section 1, memorisation
also leads to an overestimation of performance. For example, CodeX
has been observed to be able to solve HackerRank problems without
receiving the full task description [18].

Memorisation can lead to high accuracy, but it does not neces-
sarily mean that the model will generalise well to new or unseen
data. This can lead to poor performance in real-world applications.
Furthermore, memorisation can reduce the model’s ability to adjust
its output to particular use cases. For instance, when slightly al-
tering HackerRank problems, CodeX [31] has difficulty producing
the correct solution, instead repeating the answer for the original
problem [18, 32].

2.2 Data Extraction Attacks
Data extraction attacks are a type of attack in which an adversary
extracts a data point from the training data of a model. Attacks can
be divided into two types for LLMs, namely guided and unguided
attacks [28].

In an unguided attack, the adversary does not know the sample
to be extracted from the model. The adversary simply attempts
to extract any training point, contained anywhere in the training
corpus [14, 24, 25, 33]. Targeted attacks are more security-critical
as they allow the targeting of specific information, such as the
extraction of emails [15, 25, 28, 34, 35].

2.3 Model Compression
Model Compression for LLMs can roughly be divided into three
techniques. Namely, knowledge distillation, pruning, and quantisa-
tion [36, 37].

Knowledge distillation transfers the knowledge of the large
teacher model to a smaller and simpler student model [36]. Prun-
ing reduces the size of the model by removing unneeded parame-
ters [36, 38, 39]. Quantisation is a relatively simple technique that
reduces the precision of the model by reducing floating point num-
bers to integers or smaller representations [36, 40, 41].

A number of methods, including XTC [37], have been developed
to combine multiple techniques to achieve a higher compression
rate. While these hybrid approaches have been used to compress
models from the natural language domain, their application to
software models has yet to be fully explored.

3 APPROACH
First, we explore the different risks and implications posed by
LLMs4Code. In our position paper, we map the existing privacy
problems in LLMs to the source code domain. We also identify other
code-specific issues, namely licencing and security [11].

3.1 Memorisation
To measure memorisation, we create a set of potentially extractable
samples for a given model using a targeted data extraction attack.
The process of finding memorised data is relatively simple [28], by
changing the number of input tokens, we can change the difficulty
of the sample, which in turn allows us to compare the rate between
different models and prompting techniques 3. This work has already
been completed and was accepted into the main ICSE track.

Using this framework for measurement, we can extend the eval-
uation to also look at specific types of data. Using techniques like
those described by Niu et al. [42], we can identify code that contains
PII and use it as input to our evaluation. We can similarly extend
our evaluation to include copyrighted code as well.

Based on these findings, we can identify patterns that elicit
memorisation in LLMs4Code and can put the user at risk. These
patterns can then be used to design datasets and training regimes
that reduce the memorisation rate.

3.2 Compression
Finally, for the Model Compression, we plan to adapt different tech-
niques for compression from the natural language domain to code.
We measure the parameter count, disk size, size in VRAM, inference
time and accuracy for each given model and compression technique.
We further investigate the impact of compressing the LLMs on the
rate of memorisation, and the relation between overparametrisation
and memorisation.

4 EXPECTED CONTRIBUTIONS
As Large Language Models for Code (LLMs4Code) continue to gain
widespread adoption, our research aims to enhance their usabil-
ity and instil trust among users. By developing robust techniques
for measuring memorisation in LLMs4Code, we empower users
with the knowledge to make well-informed decisions regarding the
models they choose to employ.

Our research contributes to the evolution of LLMs4Code by
addressing concerns related to memorisation, thereby reducing
the likelihood and associated risks of unintended memorisation
in model outputs. This proactive approach ensures that users can
have confidence in the reliability and generalisation capabilities of
the models they rely on, fostering a more secure and dependable
ecosystem for utilising LLMs4Code.

Moreover, our work on compressing LLMs is a significant step
towards democratizing access to these powerful tools by substan-
tially reducing the hardware requirements traditionally associated
with their deployment. Our efforts will make LLMs4Code more ac-
cessible to a broader audience, paving the way for wider adoption
and greater participation, which would enable more individuals to
benefit from the use of LLMs4Code.

REFERENCES
[1] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain,

D. Jiang, D. Tang et al., “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” in Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

3Language Models Training Data Extraction Challenge: https://github.com/google-
research/lm-extraction-benchmark

https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark


Towards Safe, Secure, and Usable LLMs4Code ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

[2] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of
large language models of code,” in Proceedings of the 6th ACM SIGPLAN Interna-
tional Symposium on Machine Programming, 2022, pp. 1–10.

[3] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W.-t. Yih,
L. Zettlemoyer, and M. Lewis, “Incoder: A generative model for code infilling
and synthesis,” preprint arXiv:2204.05999, 2022.

[4] A. Al-Kaswan, T. Ahmed, M. Izadi, A. A. Sawant, P. Devanbu, and A. van Deursen,
“Extending source code pre-trained language models to summarise decompiled
binaries,” in Proceedings of the 30th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2023.

[5] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code completion by
jointly learning from structure and naming sequences,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE). ACM, 2022, p. 401–412.

[6] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama,
M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities of large language
models,” arXiv preprint arXiv:2206.07682, 2022.

[7] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou
et al., “Chain-of-thought prompting elicits reasoning in large language models,”
Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837,
2022.

[8] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instruc-
tions with human feedback,” Advances in Neural Information Processing Systems,
vol. 35, pp. 27 730–27 744, 2022.

[9] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer,
A. Grattafiori, W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin,
N. Usunier, T. Scialom, and G. Synnaeve, “Code llama: Open foundation models
for code,” 2023.

[10] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin, and D. Jiang,
“Wizardcoder: Empowering code large language models with evol-instruct,” 2023.

[11] A. Al-Kaswan and M. Izadi, “The (ab)use of open source code to train large
language models,” in Proceedings of the 2nd International Workshop on Natural
Language-based Software Engineering (NLBSE), 2023.

[12] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership
inference attacks from first principles,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 1897–1914.

[13] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang, “Quantifying
memorization across neural language models,” preprint arXiv:2202.07646, 2022.

[14] N. Carlini, M. Jagielski, C. Zhang, N. Papernot, A. Terzis, and F. Tramer, “The
privacy onion effect: Memorization is relative,” Advances in Neural Information
Processing Systems, vol. 35, pp. 13 263–13 276, 2022.

[15] P. Henderson, X. Li, D. Jurafsky, T. Hashimoto, M. A. Lemley, and P. Liang,
“Foundation models and fair use,” arXiv preprint arXiv:2303.15715, 2023.

[16] Z. Sun, X. Du, F. Song, M. Ni, and L. Li, “Coprotector: Protect open-source code
against unauthorized training usage with data poisoning,” in Proceedings of the
ACM Web Conference 2022, 2022, pp. 652–660.

[17] K. Tirumala, A. Markosyan, L. Zettlemoyer, and A. Aghajanyan, “Memorization
without overfitting: Analyzing the training dynamics of large language models,”
Advances in Neural Information Processing Systems, vol. 35, pp. 38 274–38 290,
2022.

[18] A. Karmakar, J. A. Prenner, M. D’Ambros, and R. Robbes, “Codex hacks hacker-
rank: Memorization issues and a framework for code synthesis evaluation,” arXiv
preprint arXiv:2212.02684, 2022.

[19] S. Biderman, U. S. Prashanth, L. Sutawika, H. Schoelkopf, Q. Anthony, S. Purohit,
and E. Raf, “Emergent and predictable memorization in large language models,”
arXiv preprint arXiv:2304.11158, 2023.

[20] V. Feldman, “Does learning require memorization? a short tale about a long
tail,” in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, 2020, pp. 954–959.

[21] N. Lukas, A. Salem, R. Sim, S. Tople, L. Wutschitz, and S. Zanella-Béguelin,
“Analyzing leakage of personally identifiable information in language models,”
in 2023 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
2023, pp. 346–363.

[22] S. Ishihara, “Training data extraction from pre-trained languagemodels: A survey,”
2023.

[23] M. Z. Choksi and D. Goedicke, “Whose text is it anyway? exploring bigcode,
intellectual property, and ethics,” ArXiv, vol. abs/2304.02839, 2023.

[24] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson et al., “Extracting training data from large
language models,” in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 2633–2650.

[25] N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer, B. Balle, D. Ip-
polito, and E. Wallace, “Extracting training data from diffusion models,” arXiv
preprint arXiv:2301.13188, 2023.

[26] D. Ippolito, F. Tramèr, M. Nasr, C. Zhang, M. Jagielski, K. Lee, C. A. Choquette-
Choo, and N. Carlini, “Preventing verbatim memorization in language models
gives a false sense of privacy,” arXiv preprint arXiv:2210.17546, 2022.

[27] S. K. Basak, L. Neil, B. Reaves, and L.Williams, “Secretbench: A dataset of software
secrets,” arXiv preprint arXiv:2303.06729, 2023.

[28] A. Al-Kaswan, M. Izadi, and A. van Deursen, “Targeted attack on gpt-neo for
the satml language model data extraction challenge,” ArXiv, vol. abs/2302.07735,
2023.

[29] A. Oprea and A. Vassilev, “Adversarial machine learning: A taxonomy and termi-
nology of attacks and mitigations,” National Institute of Standards and Technol-
ogy, Tech. Rep., 2023.

[30] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only
membership inference attacks,” in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 1964–1974. [Online].
Available: https://proceedings.mlr.press/v139/choquette-choo21a.html

[31] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov,
H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power,
L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike,
J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba, “Evaluating large language models trained on code,” 2021.

[32] J. Tan, D. LeJeune, B. Mason, H. Javadi, and R. G. Baraniuk, “A blessing of
dimensionality in membership inference through regularization,” in Proceedings
of The 26th International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, F. Ruiz, J. Dy, and J.-W. van de
Meent, Eds., vol. 206. PMLR, 25–27 Apr 2023, pp. 10 968–10 993. [Online].
Available: https://proceedings.mlr.press/v206/tan23b.html

[33] M. G. Oh, L. H. Park, J. Kim, J. Park, and T. Kwon, “Membership inference attacks
with token-level deduplication on korean language models,” IEEE Access, vol. 11,
pp. 10 207–10 217, 2023.

[34] J. Huang, H. Shao, and K. C.-C. Chang, “Are large pre-trained language
models leaking your personal information?” in Findings of the Association for
Computational Linguistics: EMNLP 2022. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, Dec. 2022, pp. 2038–2047. [Online].
Available: https://aclanthology.org/2022.findings-emnlp.148

[35] F. Mireshghallah, K. Goyal, A. Uniyal, T. Berg-Kirkpatrick, and R. Shokri,
“Quantifying privacy risks of masked language models using membership
inference attacks,” in Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 8332–8347. [Online]. Available:
https://aclanthology.org/2022.emnlp-main.570

[36] X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A survey on model compression for
large language models,” arXiv preprint arXiv:2308.07633, 2023.

[37] X. Wu, Z. Yao, M. Zhang, C. Li, and Y. He, “Xtc: Extreme compression for pre-
trained transformers made simple and efficient,” Advances in Neural Information
Processing Systems, vol. 35, pp. 3217–3231, 2022.

[38] M. Xia, Z. Zhong, and D. Chen, “Structured Pruning Learns Compact and
Accurate Models,” in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association
for Computational Linguistics, May 2022, pp. 1513–1528. [Online]. Available:
https://aclanthology.org/2022.acl-long.107

[39] Z. Wang, J. Wohlwend, and T. Lei, “Structured Pruning of Large Language
Models,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 6151–6162, arXiv:1910.04732 [cs, stat].
[Online]. Available: http://arxiv.org/abs/1910.04732

[40] Z. Yao, R. Y. Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He, “ZeroQuant: Efficient
and Affordable Post-Training Quantization for Large-Scale Transformers,” Oct.
2022. [Online]. Available: https://openreview.net/forum?id=f-fVCElZ-G1

[41] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney,
and K. Keutzer, “Q-BERT: Hessian Based Ultra Low Precision Quantization
of BERT,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, pp. 8815–8821, Apr. 2020, number: 05. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/6409

[42] L. Niu, S. Mirza, Z. Maradni, and C. Pöpper, “CodexLeaks: Privacy leaks from
code generation language models in GitHub copilot,” in 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, Aug.
2023, pp. 2133–2150. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/niu

https://proceedings.mlr.press/v139/choquette-choo21a.html
https://proceedings.mlr.press/v206/tan23b.html
https://aclanthology.org/2022.findings-emnlp.148
https://aclanthology.org/2022.emnlp-main.570
https://aclanthology.org/2022.acl-long.107
http://arxiv.org/abs/1910.04732
https://openreview.net/forum?id=f-fVCElZ-G1
https://ojs.aaai.org/index.php/AAAI/article/view/6409
https://www.usenix.org/conference/usenixsecurity23/presentation/niu
https://www.usenix.org/conference/usenixsecurity23/presentation/niu

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Memorisation
	2.2 Data Extraction Attacks
	2.3 Model Compression

	3 Approach
	3.1 Memorisation
	3.2 Compression

	4 Expected Contributions
	References

